STARS (SOFTWARE TECHNOLOGY FOR ADAPTABLE AND RELIABLE 171
SVSTEHS) HETHODOLOG ({12 lNSTlTUTE FOR DEFE“SE ANALYSES
ALEXANI W _MCDONALD ET Al

UNCLASSIFIED IDﬁ-P-1814-VOL-2 1DA/HA-85-29622 F/G 9/2

AD-A163 271




I

25 3 2

e WY

AR

M
1!

R e, P
s g, B e e I T e\ e Al T

- m“a
SEHEEE

m—m_m_um::_

=i =i

I
ll=

L

T - o e e oy g e 4 .oy
% L% 3 P e e SR et LA -.,,. Pl ..os ~.

Méé

1-4
=

U

———
————
—

125

I

'llll‘lvilnlll - . LA z
s TER .\v.‘lni.\.,. _..-'-. -Nh.-an. LS % e
L3

2 "

B ¥ ot LB ] ot R B

B e tndid el wd

e



LICARL A .;,-.A-,“._;_-.,._A.:._.....'.‘,:‘T..."I. P At et et L -T‘,Txu"ﬂmt..m..:.muxl&i}s AR
AOKAL S
a— . -‘ '-- '.
AD-E 500 749
\ L t. '_’,-“-
k Cepy 3 of 59 coples

IDA PAPER P-1814

STARS METHODOLOGY AREA SUMMARY

Volume II: Preliminary Views on the Software Life Cycle
and Methodology Selection

AD-A163 271

Catherine W. McDonald-

William Riddle DTIC

":'-.' vt s ' DA :",' LA

Christine Youngblut ELECTE
JAN 2 2 1986
March 1985 D
[ Prepared for

Office of the Under Secretary of Defense for Research and Engineering

DTG FilE COY

INSTITUTE FOR DEFENSE ANALYSES
1801 N. Beauregard Street, Alexandria, VA 22311

lacan B o SeEER /R B

.
oo
N

j—y
0N
b

0 6 1  10ALeg No. Ha 85-20622




~ - B . - J g - - - - il ~
M A B AT R A L S PSR A S S R S B i S T 200 A AL TR S . Sl e S b A g Ay A A >

AN (Y

HE o

Wiy

The work reported in this document was conducted under Contract -
Ne. MDA 903 84 C 0031 for the Department of Defense. The publics- ;
tien of this (DA Paper dees net indicate sndersement by the Depart- r.
ment of Defensse, nor sheuld the contenis be construed as reflecting h ‘:
the official pesition of that agency. e

'
.

.
»
LI}

/

0 a" s

-
T
T
»
v l"
[ g

.

This Paper has been reviewed by IDA te assure that it meets high
standards of theroughness, ebjectivity, and sound analytical -
methedelegy and that the conclusions stem frem the methedelegy.

Appreved for public relesse; distribution unlimited. b

.
(PG
LN AN
ete et

- y
' [ AR

v -
.

f“"'”
‘et

v T T s
o tst Ve e e
Tt .’_ D R

. .' LIS
., » "
S
A
~ [

_‘4
.
o
[
#

v
SRS,
«e’a .

s s e
LA e

"oy
o

s

j i

]-q'v -

P vy
L & .l

)
[ Tt }
o

L R R S P S P L T --.r’":‘
AR S IS RAOROAS SR SLRER ” g W SRR A g




AP-Ale3 &1

REPORT DOCUMENTATION PAGE

%Y W, 4“‘
e —— )
"§ Ya. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS Y
-] Unclassified el
R ey - e °d
28. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/ AVAILASILITY OF REPORT :,:: -’,-'ﬁ
A

' M 26 DECLASSIFICATION / DOWNGRADING SCHEDULE
N

F'a. PERFORMING ORGANIZATION REPORT NUMBER(S)

P-1814 Volume II

6a. NAME OF PERFORMING ORGANIZATION

YT v v
6b OFFICE SYMBOL

Approved for publlc release;
Distribution unlimited.

T T TS S =TTy =V
$. MONITORING ORGANIZATION REPORT NUMBER(S)

B T VT YY" e~
Ta. NAME OF MONITORING ORGANIZATION

!! Institute for Defense Analyses (t applicable) DoD-IDA Management Office
6¢. ADDRESS (City, State, and Z2IP Code) 7b. ADDRESS (City, State, and ZiP Code)
'~ | 1801 N. Beauregard Street 1801 N. Beauregard Street
--§ Alexandria, VA 22311 Alexandria, VA 22311 :
- - | 83. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ’
ORGANIZATION Of spplicable) W
OUSDRE (R&AT) STARS JPO MDA 903 84 C 0031
8¢c. ADDRESS (City, State, and 2iP Code) 10. SOURCE OF FUNDING NUMBEERS 1
] 1211 Fern Street PROGRAM PROJECT TASK WORK UNIT
[ Arlington, VA 22202 ELEMENT NO. NO. NO. JACCESSION NO.
T~5-293

11. TITLE (nclude Security Classification) Methodology Selection
STARS Methodology Area Summary Volume II: Preliminary Views on the Software Life Cycle and/

12. PERSONAL AUTHOR(S).
Catherine W. McDonald, William Riddle, Christine Youngblut

13a. TYPE OF REPORT 13b. IME COVERED 14. DATE OF REPOIT\(%Q%’,S Month, Day) I!S. PA7695 COUNT

. Final FROM TO

" [ 16. SUPPLEMENTARY NOTATION

. 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

- FIELD GROUP SUB-GROUP methodology, Ada, software engineering, methods, life cycle,

classification, evaluations, selection, software, character-
istics, maintenance design

19. ABSTRACT (Continue on reverse i necessary and identify by block number) 1,4+1211y, the Ada Jant Program Office
(AJPO) sponsored Professors Peter Freeman and Anthony Wasserman to identify requirements for
« | software development methodologies that would allow the Department of Defense (DoD) to

: realize the full potential of Ada. Since that time, the work on methodologies to suppnort Ada
has been transferred to the DoD Joint Program Office for the program entitled Software
Technology for Adaptable and Reliable Systems (STARS). The STARS Joint Program Office (SJPO)
7. jobjective is to improve the productivity level of software system development and support as
« fwell as the resulting quality of deployed software systems.

) This report consists of two volumes: Volume I presents the organization and pnlans of

-. f§ the STARS Methodology Coordination Team. Volume II is a technical report concerned with the
=" {development of methodology classification, evaluation and selection technologies and a
framework of characteristics that can be used to support these technologies.

" -

20 DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
O UNCLASSIFIEDAUNLIMITED [ SAME AS RPT.

228 NAME OF RESPONSIBLE INDIVIDUAL

Comic UsERS

220. TELEPHONE (Includfe Area Code) | 22¢. OFFICE SYMBOL

83 APR edition may be used until exhausted
All other editions are obsolete

RITY IFICATION OF THIS PAGE




: G
> S

e [" 3 .
7 é%
< ..'-%:
o

q !'r"
(2 IDA PAPER P-1814 !"‘1
‘ o
N STARS METHODOLOGY AREA SUMMARY SR

: ~ R
: : : L
A Volume II: Preliminary Views on the Software Life Cycle DN

) and Methodology Selection ko
3

N

Catherine W, McDonald
= William Riddle
Christine Youngblut

Accesion For

S March 1985 e Sras

sf=]-7 =5
-
7'
P e

Unannounced '

a Justification ! _

et

By . R

Di:zt ibution/ ".’

Availability Codes e
= R Avail and/or K
Dist Special e

PO

3 - A-l
N 1D ‘

- — } .:-‘.:'_,
INSTITUTE FOR DEFENSE ANALYSES ‘ ;1

i Contract MDA 903 84 C 0031
Task T-4-222 e




A T T N S N e L A T o T O TP SR DB “rEh At A E et TR IN N KT

ACKNOWLEDGEMENTS

»?

A

g
o

The authors would like to thank those people who participated
in the limited review of this document., Suggestions not

L4

o incorporated in this document will be addressed in future
T publications under the STARS Methodology Area.
- The authors also appreciate the efforts of Joe Batz, Carol
L X Morgan and Robert Mathis from the STARS Joint Program Office, and
Rk = Tom Probert and Jack Kramer of IDA for their comments on previous
versions of this document. Special thanks go to Lou Chmura, Sam
e Redwine, Pete Fonash, George Sumrall and all the other members of
= the MCT who contributed so heavily to the material presented here.,
S ‘. Finally, the authors would like to thank Jo Ann Stilley and
Y i; Betty Henderson for their assistance in preparing the document.

Mrs., Stilley spent many hours typing the various drafts and the
- final version. Ms, Henderson prepared all of the figures and
. tables.

i1

. e e e e T T T P T P Y P
R R o o " . ¢« - . . .. OO YL S S T TR I S SR P TS - R R T N S T T S B R I R TR
S, P PR et At et L, e - o IS
LTI T MR 4 * v AT A A S AN RS PR TR S A YA Sl N S T T T A TS I AR SR T SR AL T

. et -
. L D R A AL S A L AT ST A A BOEAAES
. . IR DA R IR A «" e AR .. . « . o K o«
PRAUA, NN, . P PR F WA P P PP WP WP UPAL T W/ Yy WP | PR WAL T, W L .Y TP WAL W W T AT P Wr WL WL, Wi LW W




ata®

PR NN le iy Ny g iy SF Al 4 DA WAL I AL 58 A WL Y ¥ A XX ARSI S s N L RNy

TABLE OF CONTENTS

o’ ACKNOWLEDGEMENTS
LIST OF FIGURES

- 1.0 INTRODUCTION
. 2.0 SOFTWARE METHODOLOGY CONCEPTS
- 2.1 Basic Concepts
< 2,2 Software Versions and Levels of Concern
, 2.3 Software Life Cycles
- 2.4 Software Methodology
d 2.5 Classes of Methodologies
2.5.1 Product-Oriented Methodologies

', 2.5.2 Other Methodology Classes
‘E 2.5.3 Mixtures of Methodologies

2.6 Summar

. y

4 3.0 CLASSIFICATION, EVALUATION AND SELECTION
v 3.1 Overview

3.2 Focusing on Ada-Compatible Methodologies

3.3 Selection Technology
_. 3.4 Evaluation Technology

3.5 Classification Technology
s 3.6 Development of the Technology
" 4.0 METHODOLOGY CHARACTERISTICS FRAMEWORK

4.1 Overall Structure of the Characteristics Framework
! 4,2 Lower Level Structure of the Characteristics
P Framework

4.3 Populating the Framework with Characteristics
- 4.4 Defining the Scope of the Other Categories
i: 4.5 Current Status of the Characteristics Framework
- 5.0 SUMMARY
" REFERENCES

......
..........

APPENDIX A GLOSSARY

Page

iii

<
[
=Y

[
|
—

[
e P s s D UN DN

NN NDNDNNNDNODNND
]
S WO

] ]
— 00 O\ () (O r=

(]

Lo Wwwwwww
]
— g

S

[ I |
N W
[«

.
v e

o e,
=) .

,.
I.' 'l




N

Figure 2-1

Figure 2-2
Figure 2-3
Figure 3-1
. Figure 3-2

Figure 3-3
Figure 3-4
Figure 3-5

Figure 3-6

Figure 4-1
Figure 4-2

Figure 4-3

Figure 4-4

Figure 4-5

............

gt PR AR M O A i i i "l B o RO g gt o 2 - JaA,

LIST OF FIGURES

Activities During a Version Life Cycle

Activities During a Software System
Life Cycle

Relationship Between Software System Life

Cycle Phases and Life Cycle Activities

Selection, Evaluation and Classification
Technologies

Selection, Evaluation and Classification
for Ada-compatible Methodologies

Selection Technology

Evaluation Technology

Classification Technology
Classification, Evaluation and Selection
Technologies for Ada-compatible
Methodologies Including Secondary
Dependencies

Definition of Characteristics Categories

Characteristics Framework

Preliminary Matrix for Collections of
Technical Characteristics

Technical Characteristics Pertaining to
Efficiency and Product-oriented
Methodologies

Preliminary Matrix for Collections of
Management-Related Characteristics

vii

Page

2-6

4-13

..’,‘- _____ s ‘:- ;-

S

]
L

3 a0l
I

.

S o S

(
BN .
PN

.{.l‘-l
& s S
R el

! .::: l

A

A R “;‘-':



o * o hon e ol eI RaCh MRl A e A S P B g i~ f0e S M 3 S S Ma el N A St e A S e i TN A G e Rora b epta g2yt L oy
]
t
2. ak
t IRt

LIST OF FIGURES (Continued) Lo

A
X7

Figure 4-6 Preliminary Matrix for Collections of )
Usage—-Related Characteristics 4-14 Lt

v -
A
N

Figure 4-7 Preliminary Matrix for Collections of ;ﬁ{:
Ada-compatibility Characteristics 4-15 ANy

.- g
o i
. b r g
.- a
~ R

viii

b ".
AN
o
» \-
)
.C‘__
- e e . . - - “. R T B W e T T W T D T e O PO N S S e e L M PR .
. . o~ ‘- - .. K - 3 .l -. - - .- ) .h- ’- - - by ’0 - » o - - .- . - -b - R '-- '. - -b. - - - - " '..
B S D e A i Y ey O L 0 LS




AR Rl AR LY sy b b Hak Tyt Dat Cad b o ki Ak ek Kot b RaniiaBat Fad Pat in? it Fa Jai e g B gVA AR SR Rt A Nata A PR 0k arh gtk s N TR

4 . .*~‘
A0
. el

t Fad
: k.
&
. T
" s,
- SeN
1.0 INTRODUCTION AL
T
! !! In September 1983, the Methodology Coordination Team (MCT)
b began addressing the comments made on the METHODMAN document e
: prepared by Peter Freeman and Anthony Wasserman (1). These ;?f.
; k: comments included: Y
b N2
i ® only "traditional” methodologies were addressed
= o
v (] it focused primarily on the development part of the Y
. software life cycle, "
. T o no relationship was established to the emerging DoD
i - software life cycle defined in DoD-STD-SDS, -

- ] the set of characteristics given for classifying -jf\
- software methodologies was incomplete and many of the o
identified characteristics were not concrete enough to DR
be measured,

® the organization of the set of characteristics was ad -
) hoc, and
; ] the requirements given for Ada*-compatible
methodologies were too general and not specifically R
l' related to the characteristics. R

In addressing these comments, the MCT focused its attention on two
- major issues: (1) software development and 'maintenance' life
H cycle and (2) an approach to classifying, evaluating and helping
- people to select methodologies. This report is a summary of the
initial work of the MCT on these issues.

Basic concepts of software creation and evolution are ?§

identified in Section 2, The use of modeling, information }{ij
- accumulation and analysis are discussed as ways of coping with the e
- risk, uncertainty and complexity associated with most software };ﬁ
projects., Different types of software versions are distinguished R

~ and the general nature of the methodological 1issues associated

. with each are discussed. The concept of a life cycle is defined

and then used to identify the spectrum of activities 1involved 1in

creating and evolving various types of software versions. The

. concept of using specific methods or general methodologies to Sl

. organize and discipline these activities is then discussed and AN
several different types of methodologies are distinguished.

ti * Ada is a registered trademark of the U.S. Department of MO P
Defense (Ada Joint Program Office) T,

. 1-1

RIS LR L O LTy o

. - e L]
LSO Y, PLOGC AL POE, TP O

o




.

Finally, the prospects for covering a broad spectrum of activities
by using several compatible methodologies are discussed.**

In Section 3, the problem of evaluating and selecting among
alternative methodologies is addressed. The need for technologies
to support the <classification and evaluation of specific
methodologies and the selection of a methodology from among
alternatives 1s established. Interrelationships among these
technologies are addressed, as 1is the process of co-evolving
them. The intertwined roles of selection c¢riteria, evaluation
measures and classification metrics are discussed. Finally, the
discussion establishes the critical need for detailed methodology
characteristics supporting the definition of criteria, measures
and metrics and therefore the <classification, evaluation and
selection technologies.

A means of organizing the potentially very large set of

detailed characteristics 1is the subject of Section 4., A
preliminary framework is proposed for organizing the
characteristics such that one can identify a subset of

characteristics pertinent to a general area of methodological
concern, a specific type of software version or a general
methodology. The framework specifies a way of further organizirg
any subset of characteristics, in particular, subsets identified
by using the gross structural framework. The framework 1is
specifically designed to be extensible and this aspect is
discussed. In addition, a procedure 1s presented for enumerating
characteristics to provide an initial population which could then
be refined and elaborated through further use of the enumeration
procedure or other procedures.

The scope of the work presented here is broad and its nature
is preliminary. It 1s 1intended to give direct and balanced
attention to both the software creation and evolution process and
the products produced during this process. It is also intended to
encompass not only software programs themselves but also all the
myriad other documents and products produced during a softare
project as well as the activities concerning the role of software
as part of some automated system. While the work has been, of
necessity, developed in the context of extant methodologies, an

*% Throughout this report, and particularly in Section 2, care
is taken to establish a well-defined terminology. A
glossary appears as Appendix A. In preparing definitions
the IEEE Glossary of Software Engineering (2), and other
glossaries, were consulted. Our definitions deviate from
these already established definitions whenever it was felt
necessary.

»
.
(
T
¥

Py ] - . .
e S AT
LTI - e v T
PRE) i » o~ '
SN .
AL L, . l'-

KN
‘ *




YT

.

R WA e i g = i S A R A i “gfaC ot

attempt has been made to provide a groundwork which 1is flexible
enough to accommodate future improvements in software methodology
as they appear. Overall, the work 1is 1intended to be a
preliminary, malleable step toward obtaining and wusing the
specific algorithms, metrics, attributes and data that can be
expected in the future.

1-3

B S T SR S S
I TR W SV P R SRS IR Iy




Ty

L

Mt et AN M ANy PR Ratan o

2.0 SOFTWARE METHODOLOGY CONCEPTS

Discussions of software methodology are often plagued by
confusion and misunderstanding because of differing perceptions and
experiences. For example, software developers and project managers
usually have quite different views of the software creation and
evolution process because of the different activities they see as
making up the process and the quite different concerns they must
address. The situation is often complicated, as with many aspects
of computer science, by a lack of a widely-used, consistent
terminology.

Terminology and a way of thinking about the software creation
and evolution process are presented in this section to provide a
conceptual basis for subsequent discussion of methodological
issues. The way of thinking attempts to focus on the process
itself as well as on the products produced as a result of the
process, to be pertinent to new approaches as well as those
currently in vogue, and to tie the issues of software creation and
evolution into the larger problem of creating and evolving the
automated system of which the software is a part.

The following statements provide a quick synopsis of the
conceptual basis and terminology introduced in this section:

1. A software method is a disciplined process for producing
software, It assists in coping with the high levels of
uncertainty, complexity and risk that surround most
software projects. The majority of current software
methods rely on modeling, information accumulation and
analysis techniques to provide this assistance.

2. A software methodology is a collection of methods. The
collection may serve to highlight those aspects common
to all the methods. Or it may serve to define an
approach to software development and post-deployment
support which is broader in life cycle coverage than any
of the methods. 1In either case, a specification for the
methodology defines those general principles, practices
and procedures shared by all of the methods rather than
the specific details peculiar to any particular method.

i PRI a O WA Y AR TP A




oy . - q ,. ! N " = 0
2 At R i DR ACIN UL TP WS A U N ) LR RtV RO AV n M gt A il P Rl P B P Tote VL | 3 i Mag g wp &

L
"-
«?s

ko

3. There are several 1levels of concern when considering
software methodologies. These range from the software
being one part of an automated system to the software
being an object undergoing change to correct
deficiencies or enhance its capabilities. Methodological

5]

f= concerns vary across these levels.,

W

‘ 4. The software 1life c¢ycle organizes the activities

- performed during software development and post-
p - deployment support. The phases of a life cycle differ,
P in terms of the emphasis on the activities involved,
? - across the levels of concern.

8 5. Product-oriented methodologies organize development and

post-deployment support activities, each emphasizing the
> production of (intermediate or final) products needed to
achieve some milestone, Other types of methodologies
reflect other approaches such as developing a sequence
- of gradually more mature versions,

t? 2.1

v Software creation and evolution involves the preparation of

Basic Concepts

- various products by following some process, One product 18 the
software's code, that is, its executable version. Other, equally
I| important, products are designs and specifications for the
software, wusers' manuals, test case definitions and results, and

project histories (currently prepared in document form). In this
report, the term software refers to all such products, not just the
executable code.

Most DoD software systems have a level of complexity that is
- almost overwhelming. In addition, creating or evolving the
v software system is often a high-risk activity because the software
is frequently targeted for use 1in an application where little
r- experience exists to indicate whether an acceptable result can be
k. obtained in a meaningful ¢time period and with a reasonable
expenditure. This risk 1is accompanied by a high 1level of
uncertainty about the system's functionality and performance, an
uncertainty that persists at least until the software is
implemented and can be tested in 1its operational environment.
There are many techniques for coping with this complexity,
o uncertainty and risk. Current approaches to software creation and
< evolution tend to emphasize three techniques: modeling, information
accumulation and analysis.

. Every product of the software development process, except the
- software's executable load module, is a model, that is, an abstract
description not containing all of the details. The obvious benefit
tt of a model 18 that {1t helps 1in coping with complexity by
ke highlighting pertinent aspects of the software. Models also aid in

v 2-2

-
AT e e T e L e R R A T R Rl MR RS S Y
‘;\‘hsi’p‘: \..'e.)-._;h.l."Di'si\‘:'y'):\ Sy PSRN \‘___‘-' -'::.'_1' "‘ I AT s g IO A )




o coping with risk since they provide points which can be returned to
hi should errors occur when

!! determining the details. Risk can be addressed by gradually and
rationally elaborating the details of a software system in a way

that supports periodic assessment of progress, that is, by

s following a process of information accumulation. This process

E% can vary from being informal and intuition-based to being
rigorously defined in terms of specific activities, techniques,

- work products and reviews. Finally, analysis is the process of

}x assessing the software's suitability and, as such, primarily

- addresses the uncertainty problem. Techniques for incrementally
testing portions of a software system as they are constructed are
prime examples.

Modeling, information accumulation and analysis provide a
strategic basis for coping with complexity, uncertainty aund risk.
These and other techniques require the use of software technology
and software methodology. Software technology provides basic
techniques for accumulating information as a series of well-defined
models that can be analyzed before the software 'is fully
operational. Software methodology 1imposes the discipline making
the overall process orderly and ensuring smooth and steady
progress., It also helps assure that project resources are
appropriately used so as to arrive at closure on time and within
budget.

oa— - Caw an
‘- .' .l .' D)
A . .

‘l . Software technology and software methodology are highly
. interrelated, with the details of each having a strong 4impact on
. the other. Consequently, while focusing on software methodology,
E. it 1is important to realize that fully working out the details of a
: particular approach to disciplining the process requires
identification of the software technology which supports, and

= complements, the approach.
’

2.2 Software Versions and Levels of Concern

Software must be frequently changed to accommodate changes in

requirements, repair errors, or upgrade quality. This leads to

several versions of the software existing over time. Some of these
versions are transient attempts to meet the requirements while e
others have relatively 1long 1lifetimes of operational service. efl?
Versions actually placed into service may reflect relatively minor RN
. modification or they may reflect the major modifications needed to ﬁ?ﬁi
IS provide similar functionality in totally different operational '?ji
situations. E
. ';:e,_.:‘
3. Three major categories of versions are of interest because ?wf?
- they relate to different sorts of methodological concerus. A S
software system is a version which delivers a capability in a form ;}Q¢
o appropriate for integration with other components to create an e
[: automated system. For example, different software systems may !Ej:
RN
2 i
R : 2-3 KoY
S
t_‘._‘h\'
( k-
- f.:-:::

B O e o Sy G B g N T L D 2 O s P




deliver a flight control capability for different types of
aircraft. A software release is a version of a software system
that 1is 1incorporated into and supported as part of an operational
automated system. Each release is intended to meet the software
system's requirements and new releases appear primarily because of
changes to the required functionality and performance or
corrections to remove errors discovered during operational use. A
software variant is a (perhaps incomplete) version of a software
release that is an (perhaps incorrect) attempt to meet a release's
set of requirements. Successive variants may reflect design and
implementation changes made to bring the software into closer
conformance to the release's set of requirements.

These three major categories are hierarchically related. A

release encompasses a sequence of variants, each being a more
suitable attempt to meet the requirements established for the
release. Similarly, a software system encompasses a sequence of
releases meeting the changing requirements levied by the software
system's operational environment.

This distinction of three levels of software versions
delineates three levels of concern for organizing and disciplining
the process of software creation and evolution.

Corresponding to the highest level (software systems) are the
overall concerns of how software fits into the automated system of
which 1t is a part. The process of software creation and evolution
at this level must account for activities such as: pre-software
definition and design of the automated system itself, making
tradeoff decisions concerning which components will be realized in
software, integration of the separately created and evolved
components, upgrading the requirements levied against a software
system, and demonstrating the software system's validity in terms
of meeting recognized needs.

Corresponding to the intermediate level (software releases)
are the project management concerns of delivering a capability on
time and within budget. The process at this level must account for
activities such as: deciding when a new release is warranted and
can be undertaken, delivery of the individual releases on time and
within ©budget, managing the overall process using tools for change
control, traceability, impact analysis, etc., and modularization of
the software system into major subsystems,

And, finally, corresponding to the lower level (software
variants) are the technical concerns relating to preparing a
complete and demonstrably suitable version which meets a set of
requirements, The process at this level must account for
activities such as: periodically verifying that the requirements
are met, and determining low-level modules that can be worked on by
individuals or small groups and that 1lead to an efficient
implementation.

2-4

_.,..
7

oy Py
et

. »
'y '-'J" Yl’
i ¥ B N

-
3
'

A
LAy

3 v
P W |
ol
.'nc
P )
()

‘y
«

(<

E
e
IR
R
.

.



2.3 Software Life Cycles

’n Every software version will be created and evolved through
: activities which make up the version's life cycle. The 1life cycle

starts once the need for the version is recognized and continues
b until the version is retired from service.

Many models of the life cycle have evolved over time. The
majority of these primarily pertain to software releases and
attempt to discipline the life cycle. The majority, therefore, are
strongly related to only a portion of the methodological issues
(those corresponding to releases) and are prescriptive, or at least
reflective, of a particular approach to software creation and
evolution. A more generic view of the life <cycle, pertaining to
all types of versions and relatively independent of any particular
software creation and evolution approach, 18 presented 1in this
section and wused to define various terms describing activities
during software creation and evolution.

Regardless of how the <creation and evolution process 1{is
carried out, every version will pass through a sequence of

historical time points during its life cycle. The time points 1in '$$€
the history of many types of versions are shown in Figure 2-1 and e
can be defined as follows: ) A

Conception: the first point at which a need for ‘' a version OyCA

is recognized,

Definition: presentation of a possibly rough and
incomplete statement of the problem ¢to be
solved by the version

Specification: presentation of a possibly rough and
incomplete desgcription of the wuser-visible

features of the version, :{iq
Delivery: presentation of a believed-to-be-suitable i%;‘

version for 1integration into the automated ii”

system ;
Deployment: presentation of the version for actual use, jfff
Freezing: determination that no further changes will be :ﬂ;f

made to the version, and Gl
Retirement: removal of the version from service.

2-5




e &8 a2 M

.

e e e e e e T R T T e e
e e e e e e e e e e e e e e e e e e e e e e e e . et e e
s et talin SR WA, WA LY 2 2, o PEAC VR N I WP AT WA TR Wi DR UPIE AL T Wl U, N, T, ..'-'-L"" L.

+

T "
,: e,

t§ ——i»
L
>
D
—_—
D
D
»

delivery deploynent

speecification freeziang

. .. retiremant
tefinitien

e T

cenception

+— Al an 21 o >
devel opnent iastallatien eperation

e
———
4
\

validation

-

ties

ivi

verification

4 —
serrective maiatenance

- et

Figere 2_1: Retivities During a Versiea Life Cyele

r 2-6

w7y
"ty

-.' ~
P
y_r

T KA
L.

i
s

AN A
» H A

T

L W ol

-,
B

L)

3
'I
N




time points can be used to define the following activities:

Development: the activity of preparing a deliverable .
version

Installation: the activity of preparing a deployable
version from a delivered version,

Operation: the activity of using a deployed version,

Validation: the activity of analyzing a version to assure
that it meets user needs,

Verification: the activity of analyzing a version to assure
that it meets its requirements,

Corrective the activity of evolving the version, after
Maintenance: deployment, to correct deficiencies.,

This view of the 1life cycle is pertinent, without
modification, to software releases since it has a strong heritage
in existing life cycle models., It 1is also pertinent to software
variants omnce one realizes that a variant's life cycle is a subset
of this general life cycle because a variant may 1inherit much of
its detail (in particular, 1its specification) from a previous
variant and may be dropped from active <consideration prior to

delivery.

The 1life <cycle of Figure 2.1 18 pertinent to a software
system although some additional terms are traditionally used when
describing a software system's 1life cycle, These terms are
introduced in Figure 2.2, The time lines at the top of this figure
represent the life cycles of the various releases occurring during
the software system's life cycle, The release life <cycles may
overlap, except that: 1) the delivery and deployment time points
for the successive releases are ordered over time, and 2) the
deployment of one release is generally coincident with, or prior
to, the retirement of the previous release.

The new terms introduced in Figure 2.2 are:

Operation & the activity subsequent to deployment
Maintenance: of the 1initial release of a software
system, and

Perfective and the activity of upgrading a
Adaptive software system through new
Maintenance: releases.




B o o N e Al IR N IR I T Ay a T A A O v IV I ey

- Ty e
.

’.. ﬁ rmn e ® e P e ¥ ® * [

SOFTWARE SYSTEM LIFE CYCLE

deployment
delivery
specification freezing
definition retirement
conception

¢ ——> Y e »
development installation operation & maintenance

validation

verification

corrective maintenance

ll [ -
4———— Activities ——————> <4— Timepoints —»
>
v

perfective and adaptive maintenance

- Figure 2.2: Activities During a Software System Life Cycle




| S0P AN IR R S i A S A A Sy e e e e TR PAity T vple Y 302 A . e L RIMTINTY AW D 2.0 A e yoany prind T

v
' fros
i B
g -

..‘v“r"
~

The first 4is just a more explicit name for "software system “1%:}
operation™ and reflects common terminology. The second reflects ———
the additional activity of preparing new releases to enhance a
software system's capabilities.

Figure 2.2 highlights a confusion that frequently arises when Yty
considering software <creation and evolution activities. Software )
system life cycles, such as presented in Figure 2.2, tend to A0
indicate a strong distinction between software development and Y
software operation and maintenance whereas everyone's intuitive
understanding of these activities is that operation and maintenance
typically involves some development activity. Figure 2.2 indicates
that this confusion comes from not clearly distinguishing the type
of version being considered. Operation and maintenance of a
software system may, and typically does, involve development of .
software releases and variants. In defining the details of RO
e gsoftware creation and evolution activities, one must, therefore, ,
clearly recognize the type of version being addressed and allow for .
. seemingly antithetical activities, performed 1in creating or [

evolving lower-level versions, to be naturally included as part of ‘ai.i
the defined activity. i

-
Vet

.

¥
B

Fr

- 2.4 Software Methodology

Many diverse ©processes and activities occur during a life el
“ cycle. These activities involve the accumulation of information als
and the representation of much of this information as software
models, They also 1include the analysis of the models and
(- information to assess the system's suitability as c¢reated or
o evolved up to some point in time.

A software method 1s a specific set of rules, techniques and

! guidelines for carrying out these processes and activities. Thus,
. a method serves to organize and discipline the overall process of
preparing and evolving the software. Some software methods will be

[ appropriate for software systems whereas others may only be
o~ appropriate for software variants, For example, to be useful for
the preparation and evolution of a software system, a software

me thod should address the problems of transitioning between
releases.

A software methodology is a collection of methods. There are

- two interpretations of this definition. On one hand, the

1 individual methods can be compatible ways of performing different

activities ~-- for example, some can cover development activities

T and some can cover operation and maintenance activities -- with the
o result that the methodology itself 1is of broader 1life cycle
coverage. On the other hand, all of the methods can cover the same

. set of activities, sharing some common aspects but differing in
it their details. 1In either case, a specification of the methodology

P
‘-

..................

. " S S N " Tw e - - - -, - - . -
O, S T S G A, S Y




—r
i |

F‘ T
)
T

s

+ "A‘J

T
¢
.

o,
LA

.
PR
et

“ et .
------

. * ~p T _.“;'-' -.~_.-_'-__'».'-,~.-_- L I ] PSP
A S A S A TR % N ST DA S S TR P P TRy s D o e

will identify those general principles, practices or procedures
which are the basis for compatibility among the different methods
or serve to highlight the commonalities among the similar methods.

Therefore, a software methodology is a general philosophy, or
approach, for <carrying out the software creation and evolution
process. It provides general principles, practices and procedures
for wusing software technology to prepare and evolve acceptable
software. It also provides general principles, practices and
procedures for using management technology to guide the overall
process to a timely and cost-effective conclusion. Whereas the
software methodology provides a general approach to the
disciplined and systematic preparation and evolution of software,
a software method translates this general philosophy into specific
actions to be performed.

A software methodology 1is very «closely related to the
software environment providing the automated and manual tools
supporting its use. These tools enforce or encourage following the
methodology's guiding principles and wusing the methodology's
practices and procedures., A very important connection between a
methodology and an environment is that the methodology provides a
basis for integrating the environment's tools. By having all of
the tools support a single methodology, there may be a high degree
of coherency stemming from the unifying conceptual basis provided
by the methodology. The connection also extends in the other
direction, It is possible to assemble a collection of tools
without regard for the supported methodology. However, in such a
case, the results will 1inevitably constrain the way 1in which
software can be created and evolved. Therefore, such an
environment will effectively impose 1its own, probably ad hoc,
methodology.

2.5 Classes of Methodologies

A software method or methodology has many features, for
example:

scope: extent to which it disciplines the <c¢reation and
evolution of a software system rather than just
the individual releases or variants,

potential for automated support: extent to which it can
be supported by automated tools, and

coverage: extent to which it covers the full 1life cycle of
some type of version.

Special names are sometimes used to denote methods or
methodologies having specific scope or coverage features or

B T T S
............................




c Tt . T e

o TR + o

o
L

[arovast

-y
DA

a s,

o

e

AT T Ta LN W T B LA 4 - Fp Ao Mty " Al Sk, Rl i, - S 3 TR 2 Sou s e

automated support potential. For example, a software system life
cycle methodology covers a software system’s full life cycle and an

automated development method provides a set of automated tools for
those activities preceding delivery of a software version.

Different types of methodologies can also be distinguished
according to the general nature of the approach they specify. Thus
there are general classes of methodologies, with all the
methodologies 1in a class sharing some general features or
characteristics, Some general <classes of currently popular
methodologies are discussed in the rest of this subsection.

2,5.1 Product-Oriented Methodologies

All methodologies result in the preparation of products and
one approach to specifying a methodology 1s, therefore, to define
these products rather than define the activities wused to prepare
and analyze the products. Most current methodologies are examples
of this product-oriented class of methodologies and emphasize the
intermediate and final products produced during the development
activity.

A purely product-oriented methodology would specify the
products but not the order in which they should be prepared.
However, current instances of this class also divide the life cycle
into phases, with the usual connotation that the phases are begun
in a prescribed order and that the products from one phase should
be finished and critically reviewed before progressing to the next
phase. A typical set of phases for a software system is shown in
Figure 2.3. The phases relate to the time points in the life cycle
and indicate the general nature of what 18 done during the
corresponding activities.,

These methodologies generally do not specify particular
activities that should be performed; rather they define the
products that are to be produced and the general nature of how and
when the products should be reviewed. This reflects the project
management heritage of many product-oriented methodologies. The
definition of the products and their review points is, in essence,
a definition of milestones that provide management insight and
control.

A typical product-oriented methodology is defined by
DoD-STD-SDS for the development of DoD software systems (3). The
general intent of this methodology is to wield management control
over the acquisition of a software release., While the emphasis of
the methodology is upon the 1initial release, the methodology 1is
also of benefit for the competitive acquisition of subsequent

2-11

NN AN « '
RN IR )

AR -
WIS BN )

L)
e

L}

LA

v

..
.
LN
Ot
t A

-
o b, B
’

v
v o Y8

o
v b e

1 LAY

l..-




A T T T Ca Wl SR AL R g N N g gt S S AR g g p g e ST AR - SRAC i S

S e e S e R
i
ﬁ Y "~:
, requireneats definition
e
. preliminary design
ﬁ detailed design
o coding (inpleneatation)
5N test and imtegration
&
- pest-deployneat support
- (naintenance) ety
~ can
He R
%_
~T S e
- * L MO0 JNON NP AU S " ‘
. SOFTUARE SYSTEM LIFE CYCLE PHASES ‘.
- g
SOFTWARE SYSTEM LIFE CYCLE e
- * » s *— s * o
Folt
A A ]
: |
Lo -~
L. -
. ‘@ .
- specification delivery éeploynent freezing
! . definition retirenent
. ‘ conception
- < ) 4 4 >
! development installatien eperatien & maintenance
l F P >
valisation
W
v
»:_. : ‘ =
E verification
o
. - 4
. 4 >
R cerrective maintenance
o 4 »>
| v perfective ane
: adaptive maintenance
X N
T Figure 2.3: Relationship Betveen Seftvare System Life
| t Cyele Phases an¢ Life Cyecle Rotivities
(o
t 2~12
3




ST AT T T ST i

v

releases, The methodology defined 1in DoD-STD-SDS focuses on
(full-scale) development and defines the documents that are to be
produced during the phases shown in Figure 2.3, It also defines
some of the details of the activities during each phase, 1in
particular the reviews that occur during and at the end of the
phase. Finally, DoD-STD-SDS specifies several auxiliary activities
such as configuration control and test management.

2.5.2 Other Methodology Classes

Since the idea of organizing the 1life cycle into phases first
appeared in the mid-1960's, several product—-oriented methodologies
have evolved and matured. While they have proven to be generally
useful, some problems have been experienced. For example, where
there 1is little experience with the application being addressed, a
totally logical progression from high-level, application-specific
concerns to low-level, implementation concerns has proven to be
difficult. In some cases, methodologies that are more attuned to
the particular application have been found to be more effective.
Also, it has sometimes been difficult to incorporate néw technology
into product-oriented approaches to development. These problems
have led to the introduction of other types of methodologies which,
while not yet as well developed, have been receiving a fair amount
of attention. These alternatives of course result in t he
preparation of products, but focus more attention on the techniques
used to carry out the process.

Data structuring methodologies are one example of these newer
methodology classes, Product-oriented methodologies tend to
emphasize the top-down decomposition of a system's functionality,
However, data structuring methodologies focus attention on the
structure of the data being processed and the composition of
processing steps that perform the system's intended data
transformations.

Another class is object-oriented methodologies.
Product-oriented methodologies tend to emphasize development of the
software system's functionality and, therefore, are primarily
concerned with modeling real-world operations in the software., The
object-oriented approach, on the other hand, provides a more
balanced treatment of objects and operations. It attempts to
mirror the problem space in the solution space by identifying the
(data and non-data) objects of interest and the operations which
act on these objects. The organization and operation of the
software 18 described by modeling the interactions among objects.
The software can be developed either wusing composition or
decomposition techniques, .

Another class of methodologies are prototyping
methodologies. Prototyping has been successfully used in other
disciplines, such as engineering and architecture, as a way of
coping with risk, It provides "rough cuts” useful in determining

2-13




RN A e i A N it SRCha R Bt e MR A i =0 S it D A 2 2 S I e A M 2 Rl SR - A" Aol i, S R U R/ et e e e B A~ R o B il oap

™

- -

2 &

T

r a

the feasibility and suitability of emerging solutions. To date,
software prototyping has primarily been used to support
product-oriented methodologies as a way of clarifying the software
requirements. Through the prototype, users can get a feel for
whether the system will satisfy their desires and expectations, In
turn, the developers can extend their understanding of what the
users really need.

Prototyping methodologies result from using prototyping as
the overall approach rather than just in support of requirements
definition. With such a methodology, an immature version 1is
initially built and then gradually elaborated to provide the full,
required functionality. In many ways, such a methodology reflects
what naturally occurs in software projects.

2.5.3 Mixtures of Methodologies

The different methodologies discussed above have different
emphases. Therefore, it could prove valuable to use different ones
for different aspects of software creation and evolution., At the
moment, there is little experience in combining methodologies. As
more experience is gained, methodology combinations can be expected
to become more prevalent.

As an example, a recent empirical study (4) has shown that
prototyping 1is valuable when experience in the application area is
lacking and the risk in being able to develop a suitable piece of
software 1is high. The same study indicates that product-oriented
methodologies are valuable in producing production-quality
systems. This suggests that it might be beneficial to use a
prototyping methodology early in a project and then switch to a
product-oriented methodology for later releases.

Different methodologies could also be used for the different
levels of concern discussed previously. For example, a prototyping
methodology could be used to produce software variants, whereas a
product-oriented methodology could be used to guide the overall
process at the software system level.

2,6 Summary

Many approaches are available for coping with the risk,
uncertalnty and complexity associated with most software projects.
The majority of these methodologies attempt to provide the needed
discipline by emphasizing the gradual accumulation of information
about the software's operational detail. Others emphasize the use
of specific modeling techniques to capture the information 1in
unambiguous, rigorous terms. Few specify concrete techniques for
analyzing the suitability of this information, other than late in
the project when the software is close to being operational.

e e e e et R ‘p 4"{ S e e '.. I o N Tt R Tt Tt T Nem T et
e . A e e N e L e e A N N N
il ot DB Y " . 4 o q « - * I, o

.-




T T T T e e T—

EAERENA A S A Al At Al S S S ArE i bl Al ln Al el bl Sal, tal tef Sho dnl sial el cadns & g & dh & A A

The majority of current methodologies specify a set of
work-products to be successively (and perhaps iteratively)
ln developed. There are several techniques (such as prototyping) and
£ partial life cycle methods (such as object-oriented programming)
supporting this product-oriented approach. Concrete methods must
be defined to capture these techniques in a usable form,

P
AP

A complete methodology must address three major categories of
concern: those associated with assuring that the software fulfills kﬁx‘
its role in the overall automated system, those associated with T
preparing software that meets 1its specification, and those
associated with wupgrading t he software to meet changing
. requirements. No current methodologies address all of these
- concerns. It is most likely that a methodology which addresses all

levels of concern will be a composite with different methodologies
being used to address different concerns. Preparing such composite
methodologies will require a way of determining the differences and
similarities among methods. Methodologies themselves are a way of
. highlighting differences and similarities since the definition of a
l. methodology provides an accounting of the features common to all of
the methods encompassed by the methodology. By defining
methodology classes, this highlighting can be emphasized even

N ﬁ'-!’

D AR A s . s an o an an g

further. ;;{3
Concrete definitions of methods, methodologies and fﬁn
methodology classes are prerequisite to determining t he i:-“
compatibility information needed to define composite ——
methodologies. However, a concrete definition requires the

identification of characteristics useful in making the distinctions
necessary to set various methods, methodologies or methodology
classes apart from each other.

An appropriate set of characteristics can also provide a ‘fw

basis for classifying and evaluating methodologies as well as S

selecting among alternative methodologies. The general nature of s

these technologies is discussed in the next section. This serves oy
to further define the nature of the characteristics which are
needed prior to a discussion, in Section 4, of the characteristics

themselves. Efﬁ

e .

N '?:jl:

e et et e A et ettt R P T N T N i P SO I R LY e et Na tet P S YRR PSR NI N R S
....... - R AR - N

et
. - e e e e e - o S e e (P . . et T G T e (N T T
- - PR A I N TS L AU S Y VP A S S .t ae R R I T IR IR R e S LS O » e a St
PV ST AL\ TSP S W W N . P WS . S W PE DU W W v DT Ry VO ‘A’mA- UV W W VO W Oy o vl v v o at o gt = et 2. ot ab A

e O T R o




T PN PN B $43 o3 . av bt Ta¢ : LN N U ML ] R P T [ VY P ISV LR R AR R P IP\. 44 4 g 8t

.
]

g

’."

2

E
i e ¥ .,
=

u.i
r

o

L Aol a8 N o
B oy ...'}
A iy

‘,\'f'l‘\ »‘

L
.

3.0 CLASSIFICATION, EVALUATION AND SELECTION

»

A means to classify, evaluate or select methodologies could

be used to support many activities: &?-

‘l....:

) identifying methodologies for use on specific software &ﬁ
projects, f«f

° identifying methodologies which need further development .
to support some particular purpose, such as maintenance }ﬁ\‘

in particular application areas, 2%
[N
e developing a "consumers guide” to methodologies, 35}
) choosing methodologies for empirical studies into issues e
such as how to provide effective automated support, and bxj
° qualifying a methodology with respect to a set of :ﬂﬁﬁ
requirements. '{ma
r

The general nature of methodoiogy classification, evaluation i-i
and selection technologies, and the process of developing them, are AR
discussed 1in this section. The discussion here concerns their use

in 1identifying methodologies for specific projects. This T
orientation has the benefit of highlighting inter~relationships and Qi;
interdependencies of the technologies; it is not meant to imply =

that this would be their only use.
3.1 Overview

The three technologies and their primary inter-relationships
are pictured in Figure 3.1. (In this section's figures, processes
and activities are indicated by names with all capital letters
whereas information and knowledge are indicated by 1lower case
names, ) The overall process 1s to consider all possible
methodologies and identify those acceptable with respect to the
criteria assocliated with a particular purpose. The major activity
is therefore selection of the acceptable methodologies. This
selection requires two supporting activity: an evaluation activity
which determines the "value” of methodologies and a classification
activity which determines a methodology's class. The relationship
among these activities is discussed in subsequent sections.

Overall guidance 1is provided by criteria, that 1is, by "‘ﬁ
specifications of need in terms of the methodology user's desires. !%’1

These criteria are purpose and project specific and for a project
reflect the target software's application area, the project's

management structure, the policies of the contractor and *éﬁj
contracting organizations, and the basic nature of the development o

and post-deployment support techniques and tools used in the Effi

project., Ideally, the classification, evaluation and selection A

r.:.:.:-:

RO

3-1 o

e




—
v

| |
—r
’ v Vot

- -
NN

o

All Possible
Methodologies

Acceptable
Methodologies

SELECTION

¢

EVALUATION

| .
criteria

CLASSIFICATION

¢

methodology characteristics

Figure 3.1: Selection, Evaluation and Classification Technologies

3-2

e et

<, 'lv:' ’- '/n-" ‘.J..";




Palii=aiier i el i el ACEE" slin* S~ A of & alia)

technologies will identify a single, “"best” methodology. But more
typically, it will identify a collection of acceptable
methodologies and additional criteria (or subjective analysis) may
have to be used to select a single methodology from among the
acceptable ones. Overall support is provided by characteristics,
that 1is, by attributes of methodologies useful for comparing and
contrasting them. These characteristics will be discussed later.

3.2 Focusing on Ada-Compatible Methodologies

Rarely are all possible methodologies considered. Rather,
requirements serve to reduce the set of possibilities and provide

an -initial focus. Since our interest 1s primarily with ijw
methodologies supportive of the use of Ada, the set of requirements CAC
in this case serve to focus upon those methodologies that can be ﬁw‘

efficiently and effectively used for Ada-based software systems. e
This is indicated in Figure 3.2. e

This focus limits the scope of the classification, evaluation
and selection technologies that are produced. The various
activities need only be able to handle selection from among
Ada-compatible methodologies. The various pieces of knowledge need
only pertain to these methodologies., While the technologies may be
useful in considering other methodologies, this would be a pleasing
side-effect rather than a specific goal.

3.3 Selection Technology

The activity of selection identifies those methodologies
meeting the criteria specified for a particular project. Selection
can be performed in many different ways, but each will generally
involve focusing on a set of candidate methodologies and choosing
among the candidate methodologies. These subactivities  are ,
highlighted in Figure 3.3. ' SN

Focusing narrows in on a set of methodologies to be given e

detailed consideration, This narrowing of attention could be done {ﬁj
at any point in the process of identifying acceptable cot
methodologies, It could even be done more than once, interleaved ‘_,

with the activity of choosing among the methodologies that previous
activities have identified as potential candidates.

Focusing could result from consideration of the criteria. For }f{

example, the criteria might specify or imply that only prototyping RO
methodologies should be considered. Alternatively, focusing could !_ﬂ
follow from consideration of factors that are not reflected 1in the et
criteria. For example, an organization might prepare a list of S
“approved” methodologies and the choice is limited to methodologies NS
from this 1list. Therefore, focusing may require a knowledge of {}j
methodology classes and a means of determining whether or not a i;;

—

3-3

.......
« .




Ada Compatible
Methadologies

Acceptable
Methodologies

SELECTION

¢

EVALUATION

I t
criteria

CLASSIFICATION

NV--ZMXMIDI~COoOm2D>D

¢

methodology characteristics

v e v e s ==
) PR S N WU LI
o AN A Cetal .
h . Y o
DAL e te IS | « e
0“ ".l O i R LA
-t % s v - [ ST TSR P
y LI . ' PREEY
. L L ST

"l'f
bl

Figure 3.2: Selection, Evaluation and Classification for
Ada-compatible Methodologies
3-4

I’l':,l N
"l

»

’
' 3
LA

A o
PR
’




...........
........................................................

Ada Compatible
Methodologies

4 SELECTION

FOCUS CHOICE

. Candidate .
Methodologies

Acceptable
Methodologies

criteria

LASSIFICATION

[j Figure 3.3: Selection Technology E::
o 3-5

.............




i N WAL N e S M it il Selh A A IR AR AT M AP S o g TR LA el WL L e LWL L ) ok, wd G A Rl g2 s N pARA N e n by sy Al
- B
E h %]
y specific methodology 18 in a particular methodology class. It may e
{f also require the ability to evaluate an entire methodology class el
3 without evaluating each individual methodology inm the class, 5??.
Subsequently, choosing among the candidate methodologies :
r, involves evaluation with respect to the criteria and interpretation R
of the results to identify acceptable methodologies. Again, many ‘33
. approaches are possible, but each will require the ability to [k
lf determine the potential value of a methodology, or <class of ?&é{
. methodologies, with respect to the criteria. AN

a 3.4 Evaluation Technology

MY

Selection requires the ability to determine how well
individual methodologies meet the criteria. This determination

.

leads to a need for measures, that is, quantitative attributes that

can be used to determine whether or not a methodology meets the e,
. criteria. These measures can be obtained by identifying useful, }Q{;
:} existing measures or defining new ones through some measure N
-~ identification and definition activity. Once the measures have ;c}§

been identified or defined, they c¢an be wused as part of an pﬁ’“
L evaluation activity that results in the methodology evaluations LA
E needed to carry out selection. These new pieces of technology are

highlighted in Figure 3.4. el
o Sometimes, the criteria may be specific and quantitative ~Lt{
. enough to be used directly as measures. More often, the criteria, SRR

being wuse and wuser oriented, will only imply the measures to be e
. ugsed. For example, "average coupling among modules” is a measure

v that could be used to determine whether or not a methodology meets
the criteria "methodology should enhance maintainability.” Prior

t; work and experience may already have 1led to a set of measures AR
b pertaining to the criteria. Often, however, new measures will have R

to be defined that are specific to the task of evaluating a - -
- methodology with respect to the stated criteria.

Exactly which measures to use in any particular evaluation
. activity may depend on the class of the methodology being evaluated
- as well as on the criteria. Thus, the measure identification and
DN definition activity will, in general, provide a set of measures to
be conditionally used depending on the class of the methodology

being evaluated.

The definition of meaningful, useful measures has proven
- notoriously difficult and most software measures defined to date
e concern only a system's final implementation. Effective
L methodology evaluation will require measures that pertain to other
products, as well as to the development or post-deployment support
. process itself, the developers of the methodology, and the

e qualifications needed to effectively use the methodology.
Preparation of a set of pre-defined measures and the development of

r‘ a measure identification and definition procedure is, therefore,

! PR
KON

- el

"y .:-_.\_q

L 3-6 R
2a'n

2

"
G
LA




SELECTION

EVALUATION
measures

¢

MEASURE
IDENTIFICATION/
DEFINITION

t

criteria

LASSIFICATIO

methodology characteristics

Figure 3.4: Evaluation Technology
3 - 7 ‘. .:_:-._




A ARSI AL S N Sa S vt St al ot i Al gl gl oA A A NS AT R VY NL T RN W LWURWCY 1 Apkiy tai vptntab a0 & K LR A L AT AL Qe

N critical, (The STARS program has started to address this critical
need through the preparation of an initial set of measures (5).)

E Once measures have been identified and defined, evaluation
- can be performed. The basic activity during evaluation will be to
L determine each methodology's "value"” with respect to the criteria.
j?} Since the <course of evaluation may depend on the class of the

) methodology under evaluation, information about the various classes

- may- have to be available during evaluation. This methodology class

0 information may also allow evaluation to proceed more efficiently

- since it might be possible to evaluate entire classes .of

methodologies as a whole,
' 3.5 Classification Technology

The evaluation and selection of methodologies requires a
knowledge of methodology classes and a classification activity
allowing determination of a methodology's class. It also requires
.- a knowledge of methodology characteristics that can be used as a
. basis for quantitative measures. These final pileces of technology,
[: along with the class definition activity needed to develop the

' required knowledge of methodology classes, are highlighted 1in
o Figure 3.5.

Methodology characteristics support the definition of both
evaluation measures and methodology classes. As with measures,
. these characteristics may merely be attributes of the products
) produced by the methodology. Or, they may be attributes of the the
N methodology itself, the developers of the methodology, or the users
IO of the methodology. For example, the following attributes could be
N used 1in characterizing a methodology: "average number of software
: modules on a <critical timing path”™, “proportion of real-world
m efficiency constraints traceable to units in software products”,
T "number of years of experience of methodology's developers in the
area of flight control software”, and "“required experience in
application area needed to make effective use of the methodology”.
These examples 1indicate that characteristics can be relatively
ill1-defined, such as the last example, or relatively well-defined,
such as the third example. To be useful in defining measures of
methodology types, ill-defined characteristics will have to be
elaborated in terms of other, more well-defined ones.,

Additionally, classification requires that it is possible to

i' objectively determine the characteristics of a methodology. Thus,

if a characteristic is not stated in measurable terms, it will be -
. necessary to identify the metrics pertinent to assessing the @Q,
EN characteristic and define the characteristic in terms of these )
metrics. N

et

re ~ oY
4
L
> el
(R A
T 3-8 RN




LLLLLLLLL

DEFINITION:

¢

methodology
classes

4

CLASS DEFINITION

CLASSIFICATION

¢

methodology characteristics

Figure 3.5: Classification Technology




P T SRS St -’ . (A~ U G ind (g Gcl Al LN My A A IRl SR R NP YR S o=t Tt )

Criteria, measures and metrics are seemingly similar terms

that are wused here in specific ways, as defined in the preceding

I Ik discussion, To recap the distinctions which have been made:
Y. criteria reflect goals or requirements; whether or not a
. methodology meets a criteria is determined by “computing” wvarious
o measures and then interpreting the values obtained; and a measure

. :} is “"computed” by determining a methodology's characteristics and
: this is usually most easily done by computing specific,
I - well-defined metrics. Using an analogy to selecting a car, the

criteria "economical™ is determined in terms of the measures "fuel
consumption”, among others, and determining this measure requires
computing the metrics "mpg, city” and "mpg, highway".

~- Characteristics may be used to define methodology classes by

l defining the attributes common to all methodologies 1in the class.

' The characteristics may be determined by identifying some broad

type of methodologies (such as prototyping methodologies) and then

determining the low~level, well~-defined attributes which

characterize methodologies of this type. The set of

: characteristics can therefore be 1incrementally built up by

i r considering different classes in turn and adding any pertinent
: characteristics found to be missing from the set.

The classification activity could be done once in preparation
for evaluation or selection, with periodic updates. Or it could be
done as the results are needed. Whenever it is done, it involves
using the characteristics to determine the <class or classes to

. ' LT

] which a methodology belongs. It leads the person performing the e
- . classification through a series of questions, the answers to which Y
. determine the characteristics of the methodology and eventually e
. lead to the identification of the methodology's classification. bij

l K Like all the activities discussed above, the <classification

o activity may be empirical. In many cases, the only way to classify
(or evaluate or select) a methodology may be by experimentally
using it in some trial situations. Ideally, this experimental
usage will be limited and involve investigation of only “small"”
systems., However, the state-of-the-art in experimental methodology
evaluation is currently insufficient to guarantee this.

- 3.6 Development of the Technology

CR The preceding discussion of classification, evaluation and
selection has 1introduced the various pileces of technology in a
§ logical order and uncovered their more obvious interdependencies.
However, it is unlikely that development of this technology will be
able to progress "top-down” in the order presented above. A major
reason is that it will undoubtedly prove valuable to prototype the
full technology in order to understand how to best evolve it into
something more extensive and useful.




LR au
AA

~
W
. .

Ce T e , St T
o e, W, A, . Vet Al s a0 e .
IR S WA T T S 'Am" ENSRPNE AT

Another major reason is that the classification, evaluation
and selection technologies will likely be empirical in nature, and

~each will be needed to support the others. For example, the

definition of methodology classes may require the ability to select
a methodology to experiment with or the ability to evaluate a
methodology with respect to some measures. This 1leads to the
secondary dependencies shown in Figure 3.6.

Thus, the technology must be gradually and iteratively
elaborated over time. Each step in this elaboration involves:

° define characteristics: define a set of characteristics
that supports the classification, evaluation and
selection of methodologies; typically this will be the
set that results from previous technology elaboration
steps;

° develop a classification technology: develop a class
definition procedure and wuse it to define methodology
classes; develop a methodology classification procedure;
use previously developed evaluation and selection
technology as necessary; expand the set of methodology
characteristics as needed;

° develop an evaluation technology: define quantitative
measures and the means to define selection criteria as a
set of measures to be evaluated; provide the ability to
determine a methodology's "value” with respect to these
measures; use previously developed classification and
selection technologies as necessary; expand the set of
methodology characteristics as needed; and

° develop a selection technology: develop procedures for
focusing upon candidate methodologies and choosing among
a candidate set of methodologies; wuse previously
developed classification and evaluation technologies as
necesgsary; expand the set of methodology characteristics
as needed.

In parallel with these activities, the requirements for

Ada-compatible methodologies will be continuously under
refinement. The refinement will result from the knowledge gained
in developing the classification, evaluation and selection

technologies. It will also affect the development of these
technologies in that it will focus work on methodologies applicable
to the development and post-deployment support of Ada-ased software
systems.

D I St )
..... R S N .

s e
PALIR P LN

SeaTl AT DA RN 3
.
g




....................................

Methodologies Methodologies =
. i
B ——‘————-t——— b
| SELECTION i
CHOICE

. .
ﬁ Candidate -
l : - R

measures 7

MEASURE| | |
IDENTIFICATION/| | !
peFINITION| | ¢

CLASSIFICATION criteria

methodology
classes

4

CLASS DEFINITION

s Methodology characteristics

iR SRR A

R
E
Q
U
I
R
E
M
E
N
T
S

e A R T S SR T S5 DDA 0N S TR SRS 30K SRR
<f%m« T T O R T I
o

SSTRERLORORES S5F S MRS TR T QT R R R T SR I N

for Ada-compatible Methodologies Including Secondary Dependencies

3-12

-t
[Figure 3.6: Classification, Evaluation and Selection Technologies FQoRe
]
1
1
.
y
N




While it may appear most 1logical to progress through the
above activities in the order in which they are presented, this is
not mnecessary. In fact, not all of them need to be completed for
every step in the technology elaboration, Each elaboration step
will result in a better understanding, not only of the emerging
technology, but also of the activities that are needed to-mature it
further. Thus, each elaboration step will provide guidance on what
to do at the next step.

Critical to all of the technology discussed here is a set of o
characteristics which will constantly undergo expansion as the -Qﬁ]
technology is developed. A framework is needed to structure this .fj
set 8o that the expansion can be conducted in an orderly manner. -
These characteristica, and their organization via a framework, are L
discussed in the next section., E

......................
......................

..........




[NR PR

AN A by N St S A e 6 S A i A S SO A S et A Pt et ettt A S N PR b 5

4,0 METHODOLOGY CHARACTERISTICS FRAMEWORK

l‘ Methodology characteristics are central to the development of
. selection, evaluation and classification technologies. Potentially,
there 1is a very 1large number of characteristics useful for
. describing, comparing and contrasting methodologies. The set of
E: characteristics may potentially never be complete but continue to
grow to reflect the appearance of new criteria or the development
of new methodologies. Consequently, there must be an organizing
F? framework for the characteristics that can be extended as necessary

) and easily accommodate new characteristics as they are uncovered.
e A preliminary framework for organizing methodology
- characteristics and a procedure for enumerating an initial set of
characteristics are introduced in this section, The intent to date
has been to determine the general nature of the framework,
systematize the enumeration of <characteristics and populate the
framework with some example characteristics suf ficient to
demonstrate 1its effectiveness and rationale. 1In the near future,
tf the framework will be wused for some initial classification
activities, This will support validating and further refining

both the framework and its underlying conceptual basis.

.

4,1 Overall Structure of the Characteristics Framework

- The characteristics framework provides a gross organization
lf for methodology characteristics by defining four major categories,

indicated in Figure 4.1, These categories highlight four major
R concerns which arise when considering methodologies for use on
- Ada-based software projects, As such, they separate the

characteristics along the lines of the types of criteria that are
likely to be encountered.

.‘.
!
i

A fifth category, automated support, was suggested by the
previous work done by Freeman and Wasserman (l1l). It was not
preserved because it was felt that this concern most naturally cuts
across all categories. In the framework described here,
characteristics of the automated tools provided by a methodology

- are categorized according to the nature of the support provided by
- these tools. As a consequence, the framework makes a strong
association between the characteristics of a methodology and the
characteristics of the automated tools supporting use of the
v methodology.

Subcategories of characteristics exist for each of the major
categories., The emphasis 8o far has been on determining the
subcategories within the technical category, These particular
subcategories have been delineated by considering the different

) types of software versions and various approaches for producing
(} them., As discussed in Section 2, there are three major types of

ettt T e




w

'.:.".' "-'.-.

v
S0A |

E

H‘v .

-——
. v

®, .-4‘

.- rf-,r - ..:~q,.: . )

¥ e R N TR TR AN T
2Nttt iAL LA

Technical

Management

Usage

Ada-Compatibility

Definition

Characteristics concerning how the
methodology supports the preparation of
products having such desirable properties
as modifiability, efficiency, reliability,
understandability and reusability; in-
cludes characteristics of the production
process (such as resource comsumption) as
well as characteristics of the produced
products.

Characteristics concerning the support
which the methodology provides for
management activities such as planning,
tracking, resource allocation and cost
estimation.

Characteristics concerning the process of
acquiring and using the methodology;
including activities such as purchase,
installation of automated support, usage
monitoring, customization, extension

and training.

Characteristics concerning the methodology's
encouragement of effective use of the Ada
language and its underlying concepts.

Figure 4.1:

Definition of Characteristics Categories
4-2




L Yyt -' MW Wy 0 Yals - Big o N L YR, - AR A S AU S ) S i M AR i K RRAAL =3 Sefom e LN LY Sam w g LAy ooaAng . L. LA se <

E )

-

ol

r. '%i?

P ‘\.'; .

. o !

software versions - software systems, software releases and ﬁ&g;

gsoftware variants - and these help in distinguishing among various et

methodological concerns, Focusing on these types of versions and il

LA approaches for producing them provides the further categorization ﬁ:;s

depicted in Figure 4.2. bR g

E . ‘::?:::':n

3 This figure portrays the gross structure of an extensible OFIE

framework for methodology characteristics. This pictorial Ne it

r, representation emphasizes that by focusing attention down through b

! the levels of categorization, one arrives at a collection of A

f characteristics that 1is pertinent ¢to that focus. However, the e

strict partitioning of characteristics implied by the figure is not }iv}

ﬂ' likely to exist 1in practice. It is expected that an individual a{y'

- characteristic will be pertinent to many different focuses and will KA

therefore appear in several collections of characteristics. Thus, g

L the framework should not be viewed as a mechanism for partitioning ﬂuf}

jj the characteristics. Rather, it provides a means for categorizing 2CONY
’ the characteristics and, as such, assists in identifying sets of

characteristics that have a particular emphasis or utility.

Figure 4.2 also emphasizes that the part of the framework iiii
receiving the most attention concerns product-oriented approaches }?ﬁ;
to producing variants., Some attention has been given to the other i?&
three major categories and this is discussed later in this section. 3ﬁé§

RSN

Finally, the figure indicates the extensibility of the At
framework to accommodate new approaches. Potentially, new
subcategories could be added anywhere in the structure. g
Nonetheless, the expectation is that the first two levels will be &l
relatively static and that future extensions will 1lead to gﬁﬁ,
additions to the collections of characteristics, the incorporation H&If
of new sub-subcategories within the technical category for NS
additional methodology classes, and expansion at the subcategory
level for the other major categories. e

AN
4.2 Lower Level Structure of the Characteristics Framework Sg}\
..' -

The overall structure of the characteristics framework serves ’if;
to identify collections of characteristics that are related in A
terms of their emphasis on various concerns or issues. However, DRDAS
further detailed organization of the individual collections is N
needed for three reasons, First, it supports understanding how the ;}$¢
characteristics relate to each other. Second, it is needed to n@fﬁ
understand how they can be wused 1in comparing and contrasting e
methodologies. Finally, the organization can help in assuring that -
the collection is reasonably complete. This subsection discusses an RN

approach to organizing collections of characteristics serving these
purposes.




s Methodology Characteristics
I

L4

A%

Y

CATEGORY
Ma jor
Concern: Technical Management Ada-Compatibility Usage

I...\ I...\ | ,Oﬁk

R

N
O AT,
 §

v
=
2,

. A P -
! "
% o
e LRSCINE S

A4

A
a:'

-
2

SUBCATEGORY K
Type of ﬁ?i
Versions: Software variant Software Release Software System £
Ab‘-h' -

lee\ lee\ P

b

SUB - SUBCATEGORY "
General :
Methodology RS
Class: Product-Oriented Prototyping 0@ @ :2-;»:‘

LLLLLL
O

Collections of
Characteristics:

v

00
A
14

Figure 4.2: Characteristics Framework !E:
4-4 i




v
L

-

y

v o
.
“

Collections of technical characteristics may be organized
using a two dimensional matrix. This matrix is based on the work
reported by Ross, Goodenough, and Irvine (6), and 1is shown 1in
Figure 4.3. The first dimension concerns product quality goals
such as correctness, reliability and portabilicy. The second
concerns general principles that have emerged as beneficial in
meeting these goals, These two dimensions allow organizing a list
of characteristics according to how they reflect a methodology's
support for following one or more of the principles to achieve one
or more of the goals.

The matrix can be used to structure any of the collections of
characteristics found wunder the major category of technical
characteristics. The definitions for the goals and principles,
given in Figure 4.3, are in terms of software variants but can
easily be changed to pertain to software releases and software
systems, Also, the principles and goals are common across many
approaches, Other matrices will be needed for the other three
major categories since different concerns and 1issues are of
importance for these categories.

A possible alternative use for these matrices is to check the
completeness of a set of characteristics, or their associated
metrics. For example, after inserting the characteristics
developed by RADC (7) into the technical matrix, one could check
their completeness with respect to the goals and principles of
software engineering as regards product-oriented methodologies and
technical concerns. As other mwmatrices are developed for other
classes of methodologies and other broad categories of concerns,
they could be similarly used to check completeness in these other
situations,

4,3 Populating the Framework with Characteristics

Our early attempts to enumerate technical characteristics
failed because of the 1lack of a concrete focus. At that time,
deciding whether a particular characteristic was pertinent and how
it related to other characteristics was largely an intuitive
matter. Also, there was a lack of consistency in the definition
and level of detail among the identified characteristics.

Experience proved that three things were necessary to support
the effort of enumerating characteristics, First, it was useful
to narrow attention to a specific major concern (such as technical
issues), a specific type of software version (such as software
variants), and a specific class of approaches for developing the
version (such as product-oriented approaches). Second, it was
useful to consider methodology characteristics in terms of how the
methodology supports the use of modern software technology
principles (like information hiding) to achieve results with

v

1
a4
'y 4

2%¢%s%3 %8
VYN
£

LNy

TE:

)
vt -t
I A




n Ps
(/arq:un 1q ’: I'O-I;u
. % 'hla.p'roaaqu'o
2" Mo R Uoz-a% X3 5 "e‘;Jos
6y, T Y @ NI
! & pa"’"bg Woy, Ny
o, 3“% 9 pu. Uq'..'
oS Pa,g Sag,, oA
P‘. :Q:: 0 Jla;nbal ([; In q’l . AWS;ZOSa 1
«T1do 9 o L,
. 8 “rys Pﬂ;%*a un, oo 3
.b:rb‘l‘ Qo ? Ju‘?‘\'gaq “ Jug allr
- % yo o s (£
1. b"-uonoahf Ss14 - 4117’%;7;4
S e IS $3, y
re “ryn o, °F sop, 23 Sty
b ? ue,, “SFieg . Fern
e xy . ‘7"0;-::
'laga
— %05
. g £
- )
KR )
[ ﬁ
2
»
. <

PRINCIPLES

MODULARITY:

turing a software variant.

Assists identi-

ABSTRACTION:

fying essential properties
common to superficially

different entities.

4

LOCALIZATION: Assists

6

bringing related things into

g
5 4
i
- 0
g 3
Qa <
4 .
iy
£ £

x

gs

EE
I E Y
I 35 8%
t fgg CF
23 22 432
£9 481 8¢
2 ¢ Sag °E
IR

essential is omitted.

Assists

CONF IRMABILITY:

[
£
§5
Z 3
-
E g
o
o O
L™
c >
-~
bl
%
E
“O
™)
£
(]
=§
1]
58

has been explicitly stated.

000

Preliminary Matrix for Collections of Technical Characteristics

Figure 4.3:

Ot
.
¢

o e e
1
e 'l .' .. '
S

Pl

-~

%

& %
i
X%

o,
-"'u'n

£,

.:l. l‘
" S *
e




Bt A NI i, p L i el el Sgh e L Rol by B Wi SR A A A L gl il i otk b 2k iy

various quality attributes (such as reliability). Third, it was
helpful to think in terms of various objectives that serve to meet
quality-related goals but rely on, or relate to, one or more of the
modern gsoftware technology principles.

The first two experiences 1led to the framework's gross
structure and the characteristic organizing matrices,
respectively. The third 1l1led to developing an approach for
enumerating characteristics to populate the various cells in the
matrices. It must be emphasized that this 1is only one possible
enumeration approach which has been found particularly helpful in
initially populating the matrices with characteristics. Other
approaches -- such as scanning independently developed lists of
characteristics or taking note of characteristics during
demonstrations or experiments -- may prove more useful in the
future when the task will shift to expanding the set of
characteristics rather than determining an initial set.

The enumeration approach consists of considering each goal in
turn, determining the objectives that support meeting this goal,
converting these objectives into characteristics and then placing
these characteristics into the cells corresponding to the
principles that support meeting the identified objective. The first
two columns of Figure 4.4 show the results of carrying out the
first three of these steps for technical characteristics pertinent
to the goal of efficiency and the production of software variants,
The right-hand column of Figure 4.4 indicates which cells in the
efficiency column would receive the enumerated characteristics when
they are placed in the technical matrix,

While  these <characteristics were enumerated within the
context of product-oriented methodologies, the result can be
expected to be pertinent to most other methodology classes. This
re-emphasizes two previously made points. First, the matrix for
technical characteristics is relatively independent of the
methodology being considered since the matrix is founded on the
goals and principles which mnust be achieved and wutilized,
respectively, by any methodology. Second, the enumeration approach
is wuseful for determining an initial set of characteristics and
other approaches may be more useful for expanding this initial set.

While use of this enumeration approach 1is primarily for
determining an initial set of characteristics, the focus on
objectives does have two beneficial side-effects which may expand
its utility. First, since objectives tend to 1imply some
measurement, characteristics which are derived from objectives are
themselves likely to be measurable, Additionally, the eventual use
of the characteristics framework in selection activities aand for
providing a terminology for stating requirements of methodologies
makes this orientation towards objectives potentially doubly
useful, \

.......




‘) o, ity gs o s o s gy KO o MOMDR AR MR YA VACACRCLS LI SRR Sa B SN AN A I ABDAC AR [h . N A AL P
.. . ... v A (-:u\“ﬁ.n\lc‘ :"”s\.& . N .\l.nm ...... LA ;-\ -\n \- . .-- » -un. 7 ‘-t B A .\
.y g A . B S ./.,:._ -, I gy B R AN L A TR B TR AR I I SR A M G B PRI SN I S IV S el I I PR TR BRI R M M v, e .
p | ‘...nu...o.w : .f._-f-‘f- \f\f\ - LNUM.X\J 5% =3 4 LA .P V.\ﬂf ..- ....... » ~\.-\..n.! -.

8973070pPOY3Id) PIIUITIO-IONPOIJ PUB ADUSTOTJJ§ O3 YUFUTRIIDJ SOTISTISIVBIABYD TBOJUYIAL :4°H 2in8yg

SR

UTBNSU0O BUTWT yoed 104 PINRISDL

salied vomaejuaundop 30 Tequnu abelaay 2 '€ . ‘pUewRp ndybnoIp e
10§ J3DTSUCI 03 UOTINIUANIOD JO IUNOWE NP -2 °'€0
IUTRRSUOO BUTWT Yoed 104 PaIebTIS3AUT

’ ¢
AN arem jos jo wontodold abeIsay | '€ PURLSD NdYBNOIW € 103

I3pTSU0D 03 SITUN ATBMJOS JO IIGNNU NPY  :| €D

"WTEDSUd i IR )
PIIIPTSU0D 20 03 SPI IV LOMPMIOAT Jo WNOW €D

‘SpURWRp INAONOIR.
TeORITL) 03 WSURId UOTIEWIONT WOTTUBTH

"SIIMINNS 1M )05 JO AATRTNOD WL T° T

“MPATINCD JIMINNRS IWMHS JO 31090 229 ....
“S390poxd

“530Np01d 381405 1B 405 UT SIPUN PUB RUTRIISUOI ANUSTIT449

UT SITUN 0} STQRSIENY I8 UWOIUM SIUTRIISUOD PTION Te3I USOMAIQ A TITGRIND. SLAIN] 120
AUITOT442 PTION TR 30 voTazodord :L°%)

WTeNISU0d
ANRTIT342 LR AQ PANIVIR IR YITYN INPOIJ S8 JOS

? UT SITUN 2SO DUTAITIUIDT JO 9509 ISRAIN]

SUTENISUD AIUITITHIS 4AQ PRI
I YIYn SITUN a1eMI 408 OUTAINILUPT 3O 9583 ©

4-8

“AURTITIIP TIRIIA0 ISEIINT TN YOTUN
SIITENSU0) ANRTITSP IRINOTIIRG USIMAQ .

SWIBDISUD ARRTITHP
$430-3pen 0 LNIRDNISOMT SRAIN]  Z°10

40 13qunu Jsuteie POIPTSUOD
S$340-3peN) JO I9QMNu JO OTIRY :Z°1)

"SITRRISU0D

ANRTITHII AR AJSTIRS SAIMINDS IIBM.405
ANEUINTE MY JO UORIBNTRAD aSeAIN]  :1°LD

‘panentesd saIMINNS
3IBM140S AMPUINTE JO IoQWW L °1)

‘AMONKS 1eM 405
RTINS 110 ue Buuenie Roword 10

‘SIUTRIISUOD ARRTOTSd DuUTAITYOR
s1roddns 9IMONNDIS FALYRJOS YOTUM 03 WRIX] (1)

SOI1SIH31OVHVYHO SINL33r80

SI1dIONIHd

AOUBTOTHI]  WOD

!




pewniey b amby

YORAZI e
“‘BUTPTH

UORRZTI®0]

UTR R Wel03s B 03 353[Qns e1ep SSIIR

URISWoD 30eI0)S € 03 393(gns elep SSIAMe

WIYA SHUN azem40S Jo uotyzodoxd aleiday L °9) YITYN SITUN IBMIJOS JO ISQUNU AR MDY L ‘90

‘Sutensuod WeIns Aq pNIVJje ‘swenswo beins
ST 4otyn 30MpoId 3IeMJ0S @ JO 3000S 40 NN QM ' AQ pNII}JE JNPOId 31MJ0S B 4O A0S R AWUIN 90

"ped UV TRIRTD “fed Bulvn. [RIRTL
® U0 SITUN AIRM 08 J0 WTII0001d DRIV LG @ U0 SLTUN AIRMJ0S JO IIQUW AR 0N L 'SD

‘swensued Bulvi. 4 PR "DUERRU G
ST {OTUR 29MPOId 3IeM40S B JO §d0JS JO JUANN AQ P23 JIN0IS IWMJ0S @ JO 3D NN WY -

WERLSUCD RI0XS YIRD 104 PINIAINSX wensued Weins e
s30ed UOTIRIUGUNOOD J0 TGN MRIBAY  Z'b) 203 I9PYSUOD O3 UOTARIUAWNIOP JO JIUNOME NP 2 WD
WRNVED 0RINS YR 103 pNebnISMuE WRNSUY WRINS © 104

SHUN 31eM 408 Jo voryrodond ey (L p) IpTSU0Y 03 SITUN RN JOS 4O IOQUU MDY  °L 90

‘fuTensuod belns 194 ‘SWBRSWI
PIIIPISUCY 3G 03 SPIJU ICBYL UOTIBVIOMT JO JIUNONY  pJ RIS 03 WAUNRIG WnNONT WBTIWBIH W

SAILSHILIVHVHO S3INILTIrE0

RN TN
| RIVERRTVT SN0 * RN DRSPS NI IR SRR SERN

(S




.......

peuned b AnBLY

PRENTEAI ATTEIUNTIIMG UG ARy SITUTT
SURTITYSP ISOYY JUTRNISUOD ANRTITHIN
Ue Aq DNNJIE SITUN B JOS JO WTII0001Y T 6D 'S19Npo1d 16M 405 JO SAkd EINTR
UO SITMTT AJUITOTHIP JO UOTIENTEAD S50913u] 260

WL
. ANITOTHIP UNOWD| NBY PLB ATRIqTT JURu0dHod SAWT AOWRTITYSR
@ W14 310 P SITUN SIEMJOS JO WTyI0dOLd L '6D UROW| WA TH SITUN IIEMQJOS 4O ISNRIL ISRITNM] L '60
"SINIT ARTITR P "SITT ANRTITS4O
ATTIeNITiN0g 390w Ionpo1d 3zemyos 10w BunPD JO K] 60 PRITNbAI 333w S3anposd Arem oS 1R DU NeWoLd 60
p : PATHTINES SI¢ SAWTT PATRNE YPOTYN NI ARPNR
: 103 SIRRITNDII ANRTOTHE Jo WoTilodoad 2 PUTENER T JO WNIRIT4TINAS SSIN] 2700
h [} .
p ‘PRI AR IR ITDAL
.4 WR SURRITNDAI ANITOTISI J0 TN :)° RTINS TI® 0 WRIYTNMS SNINT L0 et
d u— .-o--.
: "PAIUMNOOD "SWIRNSU0d .
; SSWRNITNG IR SIUTENSUWD ANRTITIIP T8 WYY 0 WNXY FORTITIIR TIR JO WRINUWNWP NITAN ANsU] g0 X
b u
1 RUTRSID ARTTH X
"PRTIRRPT ATIOTITUT TI¢ J0 UORBITJRUIDT ATRS 35e3I]  Z°LD .....\..‘
I0U SIUTRDISUOD ANRTITIS JO NQIN 2°L) .m
‘SITUN 31M408 ZETNOTIIRG 0 NIUTRIISUGD e
"SITUN IIRMJOS 03 PAdeN) 9G U AORTIT44 §0 DUTIRINSIL-SSOID ISTIIN] |10 \..
WU SIUTRILSU0D ARTITSII 4O woatodold :L°LD "
"RRDSYD
. SSUNITMNCD "UIRNISU0D ANITITHI JO UOTIRITUMT 4o JuNX] LD AWBTITIIP 4O VOIROTINUGPT WITAMCD AINSU] 110 m.u
. SIFdIINJ SJLSIHI1OVvHVYHO SaNLOArgo o
, fARILA V0D .
y A e B Ll W . S ¥ - . B ' { ™ [ -
] JE— — et mm— SEEEEEE . <« s % + ¢ v DR . 2 . 8 & + ¢ pmmm: @ - - v v._-= Y P R S e |




:

Pl ¥
>

T R———

....................

It 1is <c¢ritically necessary, when using this enumeration
approach, to do the seemingly redundant step of converting the
objectives 1into wunbiased characteristics. It is the rature of an

objective to include some bias, for example, "Minimize complexity
of - or “Localize the scope of ceee Whereas, a
characteristic should be an unbiased statement such as "Degree of

complexity of ..." or "Extent of scope of ...". This lack of bias
is necessary since, in some situatioms, it may be desirable to
compromise a particular objective so that another can be optimized.

It 1is also critically necessary to determine, as illustrated
in Figure 4.4, subobjectives down to a level leading to measurable
characteristics. While many characteristics are directly
measurable, some will not be, For example, several relatively
well-established metrics, such as Halstead's Software Science
metrics or McCabe's Complexity metric, can be used to evaluate the

characteristic "degree of complexity of software structures”.
However, the characteristic "extent to which software structure
supports achieving efficiency constraints” cannot be easily

measured directly and the objective from which it stems must be
successively decomposed wuntil subobjectives are reached that lead
to measurable characteristics.

A knowledge of metrics is, therefore, crucial to identifying
characteristics. The metrics work done by others, such as at RADC
(6) and within the STARS Measurement area, will of course be
critical 1in both guiding the enumeration of characteristics and
suggesting characteristics which are not uncovered by enumeration
approaches such as discussed here.

The enumeration approach is, in essence, table-driven and can
be used to identify and organize an initial set of characteristics
in other categories. The matrices for these other categories,
discussed in the next subsection, <can be used to drive the
enumeration approach in order to identify characteristics pertinent
to these other categories.

4,4 Defining the Scope of the Other Categories

The organizing matrix shown in Figure 4.3 reflects the goals
and principles of software engineering. It relates to the
technical aspects of a methodology and, therefore, is most wuseful
in identifying and organizing the technical category of
characteristics.

Similar matrices for other categories can be obtained by
replacing the goals and principles with those of the ‘other
categories of concern. Organizing metrices have been defined 1in
this manner for the management, usage and Ada-compatibility
categories and these are discussed in this subsection.

.................
.............

DR RN AR AT AR SN S A ,. WL e, e e e T T N R T TR TR T Y A T N R R T e A nL P I AW W R TI LW
. Ak




{~ s
S N
- The management category addresses the planning, organizing ﬁfi
and controlling of software projects., This area of concern involves e
;‘ consideration of both the management of software products and the
people involved in the software creation and evolution process. AR

Consequently, the matrix reflects both purely managerial issues,
such as staff scheduling, and more technically influenced issues,
such as measuring progress against pre-defined milestones. This
matrix is shown in Figure 4.5.

»
0

. 8 ¢
v, v, -

2,

-
R T
. 2

T

The wusage category covers a fairly general area of concern.
It includes issues of how a methodology meets the special needs of
a particular organization and activities such ads the initial
acquisition of a methodology by an organization and 1its subsequent
continued use. To achieve this focus, the preliminary matrix given
in Figure 4.6 defines goals that relate to the ability to acquire,
use and adapt the methodology for a specific project or across a
. group of projects. The principles defined here indicate some of
o the considerations that can support meeting these goals.

" s_C ¥ T ¥
PR A AR
.I.,.'-:v
o s
‘I. (A

\t

i

The Ada-compatibility category concerns how a methodology
supports the use of Ada. To some extent, this issue is already
dealt with at a conceptual level by the technical matrix. Because
- Ada was designed to support achieving the goals of software
. engineering, and these are the goals which are compatibility in the

technical matrix, the technical organizing matrix of Figure 4.3

reflects both the technical and Ada-compatibility characteristics
' of a methodology. However, it is still necessary to reflect how a
methodology supports use of Ada at a detailed level and so an
additional matrix has been developed to meet this need. This
Ada-compatibility matrix is shown in Figure 4.7,

This final matrix reflects how a methodology supports ol

] effective use of specific Ada language features. This cannot be
: done 1in 1isolation of considering how these language features are e
being used. For example, the use of representation specifications AORN

for developing software to <control peripheral devices will be SRS

different from their use 1in developing pattern recognition i;;{
software. Therefore, the Ada-compatibility matrix wuses major SO
_ software functions for its goals and the <chief Ada 1language !_

constructs for its principles. Software functions, such as AN
peripheral control and process control, are used in preference to RN
application areas, such as ballistic missile systems and C3 systems N
since they tend to be better-defined and more specific, whereas O
application areas typically involve a variety of different software C
functions. Thus, this matrix supports identifying and organizing gpﬁ

characteristics which describe how a methodology supports use of )

each language construct in developing different types of software
functions,




SOTISTIa308IBY) PIjBTaY- Juawabeusy JO SUOTIOATTOD JO4 XTIIEW AJRUTWTTdId :6'v aInbr4

5 o]
o
) o
... *A3TTT9TSUOdSa1 juawabeuew
N jusualeusw Jo uoyjeredas
. S3INSU3  INOILVYZINYIHO TWIIHOMWY3IH :
0 R
=5
... _....
. . of
*SW104 ITQeITNS uT pajuasaad ST S0
UOTIBWIOJUT 1By} PUB PAYSTTQEISd oS
axe syjed uoTjeOTUNWWCD KIBSS3JaU 0 9
118 38y} S9INSUZ  :NOTIVITNIWNGD -
4
) o
s 1
‘wea) jJuawabeuew ay3 03 aTqeTTEAE B .
apew ST UOTIBWIOUT JuauTIiad 1
Tre ey} sarnsu3  :ALIIIGISIA -
et
) o o o > A R
000 3 R S 23 & 3 Y,
& Il S 0 m ® S
g § 3 2 3 2 s 3 5
- z &g & 3 g g
-2 Q ~ T
s N i % 4y I gh %.. g o Im SIWININd e
: : . > S -
o > % ' m-. o .... ¥
% > .W s & g & o m il £ % R
a A o M~ b ) ~ d g A
£35 £ I N S 25 re s
.%4 2o > & g~ o .W/. STwo9 e
o ~ % < .ﬂ e " J ™ et
[ [ Q 35 ~ O e’
§ o g & ) Q 1S
ed g £ 2 g ® £35
~ ~ § &L & 2 1
< ag ] ~ D *e
m- ~ o Mvv % ~ A
= & @ it

F IR cee

R ) Ca . ' Tt 0., oY : E S
7 e PN A e st PR ] PR

R DLV P

oty v s R, e




GOALS

PRINCIPLES

Use of
commonly known concepts.

FAMILIARITY:

—
cK:
o >
£8
23
v-l-m
mf
a5
2t
L
gl £
gl

Ensuring

a common set of concepts.
tools can be incorporated.

that new techniques and

EXTENSIBILITY:

000

Preliminary Matrix for Collections of Usage-Related Characteristics

Figre 4.6:

e

4-14



Promotes

PACKAGING :

encapsulating objects and
operations and hiding
internal details.

Extends the set of

TYPING:

predefined data types and

enforces checking.

L3

Promotes the

GENERICS:

reusable software units.

development and use of

-
vl

Provides a

TASKING:

capability for specifying
cooperating sequential

processes.

and resolution of software

Encourages identification
failures.

EXCEPTION HANDL ING:

Provides

REPRESENTATIONS:

outside the scope of the
efficient representations.

language and promotes

interfaces to features

000

Preliminary Matrix for Collections of Ada-Compatibility Characteristics

Figure 4.7:




il 1] A2 b Pl 2 pilptzd ) ) Sa . e Lo Tl e DA 68 S g i N A K A R T TNy, oy g W B D e Pk AN Bas Wow

;®

prarlh.

J
e v s

=

.‘l K I
&) - "0.‘
o nd
i o 4.5 Current Status of the Characteristics Framework iﬂﬁ
I . ’ .‘.:
!! The technical matrix and enumeration approach have already .
£ veen used to identify some initial technical characteristics. This a
> initial set of characteristics is incomplete. In particular, the Cx:{
LA decomposition of objectives to subobjectives is not exhaustive and ;E”
B further decomposition will result in the identification - of g{;
¥ additional characteristics. In the near future, the A
- characteristics framework will be extended to include additional
& ﬁf collections of characteristics in the technical category and to
v cover the other major categories. This framework will continue to
A evolve over a span of several years as understanding of the
- f: software development and evolution process grows and new types of
i e software methodologies are developed.
s ]
o
(- ey
t Y
s
9 ¥
2
'.'..-.
k;f
2
a2

.
.
8
-

T 'l .
R RN
et
y

)

AR A e
PP
' .
-

“a RN S LN L L) LR TSR SR W S PR G I R I S
~ r:){:“f%:ne‘)?¢“e e Y e et A L N S




S JERESLACACS SR R A A=A
A

-3
y o
E w2
" XN
u‘,‘i
[ o
“. ':'n‘:-
5.0 SUMMARY b.;:;.
[
F This document provides a basis for discussing the concerns o
and issues of software methodology, identifies the pieces of Y,
. technology needed to be able to classify, evaluate and select }‘;
E‘_ among software methodologies, and introduces a flexible framework ,,*» ¥
v for organizing the myriad detailed characteristics needed to «‘;'A‘
support these technologies. It provides few solutions but,
instead, defines the dimensions of the problems surrounding !:'_."._
o software creation and evolution and the general nature of the ;:-_.::-'.
solutions. As such, it lays a groundwork for rationally obtaining ;.&:‘_‘.:
R and using the technology critically necessary for the disciplined -:::-:.-
E- creation and evolution of software. ]
et
[T
! AGN
"L‘.-\‘-
NS
" -
-- ..
L b
o
b
"
-
Ho
- RN
‘..\'.\*
. SRS
E‘ ."‘-'\d
i :
(A
5-~1
A P Z-;_';-,_';-',;.-:“}',:'.-‘_'.'.;;Zl_ NN -‘;;;;-.A;;l'i:';'. h e




A PN A I AT A R A A Rl IR e T e A b S ARS Kt A A S Sy P O R LK et R P it -".-.-- LW ‘..r\,;-'.-“--“‘,'s" 'B.E.H‘t{ ‘ﬂ".

of-d e

‘(

L8

.

Rt
¢ ..

B
[l

S

(1)

(2)

(3)

(4)

(5)

(6)

(7)

REFERENCES

Freeman, P,, Wasserman, A.I., "Ada Methodologies: Concepts
and Requirements”, Ada Joint Program Office, Department of
Defense, November 1982,

"IEEE Standard Glossary of Software Engineering Terminology”,
IEEE Computer Society, std. 729-1983.

Department of Defense, "DoD-STD-2167 Defense System Software
Development,” (Draft), January 30, 1984.

Boehm, B.W., Gray, T.E., and Seewaldt, T., "Prototyping
versus specifying: A multiproject experiment,” IEEE Trans. on
Software Engineering, SE-10, 3, pp. 290-302, May 1984,

STARS Measurement Data Item Descriptions (DID's), STARS
Measurement Thrust Area, 1984.

Ross, D.T., Goodenough, J.B., and Irvine, C.A., "Software
Engineering: Process, Principles, and Goals,™ Computer, May
1975.

“Software Quality Measurement for Distributed Systems,”
RADC-TR-83-175, July 1983.

o

T
o«
L)

e S

S
.

% '

LAY

Py

L

1/ .
s Pt

.

D
WL
s .
» .
Lt N
Yo
e
Sl
Ve
IR
e
..
!\

DA

Ce et
.

-_'i'
P4
Sy

‘s

4 »
i B AN
SLNA

!




e Bsra B 00 B SREAEER] wesn -k KRAI XIOCRRA
AR 3 e N g . 1 .\.. Ch ) ' I-- \\‘. "
Pl e s i ) : b et ‘ g . . ‘ -a.\?-.h-hr\\

Pt ik i oAk g

APPENDIX A
GLOSSARY

LN
PR AR

(=]
[ 3
I
[S

» ":.J



iat 9 » o8 o &

e - %%

e s
)

77

L X

3 v,

- —
s

TAERER

e

B
Sl

L

.’.".' -" _'-’ .‘ -f~ .1.1.. - ,.-

Adaptive
Maintenance:

Analysis:

Automated Software
Environment:

Automated System:

Characteristic:

Characteristic
Framework:

Classification:

Coding:

Conception:

Corrective
Maintenance:

Coverage:

Criteria:

Data Structuring
Methodology:

.t
-----

AT -.'.

maintenance performed to make a
software version usable under a changed
set of requirements

the activity of determining whether or
not a software version is suitable

a collection of tools that assists the
process of creating and evolving
software

a system composed of hardwaré, software
and human components

see Methodology Characteristic

a structure for categorizing
characteristics

determining the characteristics of a
methodology and what these
characteristics imply about its general

type

the phase in the life cycle

during which data or a software version
is represented in a symbolic form that
can be accepted by a processor

the point in time at which there is an
initial perception of need for a
software version

maintenance performed to overcome
identified faults

extent to which a methodology covers the
full 1life cycle of some type of version

use~-oriented, high-level attributes
useful in deciding acceptability

methodology that focuses initial o
attention on the definition of system i
inputs and outputs



PR T

ROAAR A S AR AN LA CHL R

Definition:

Delivery:

Deployment:

Detailed Design:

Development:

Evaluation:

Freezing:

Implementation:

Installation:

Life Cycle:

e e e G e N R N . e e N R B RE AL W . a .

the point in time at which a software
version is described by a document
defining the problem to-be solved and
the general nature of and requirements
upon its solution

the point in a life cycle at

which a software version is released
for integration into the automated
system of which it is a part

The point in a life cycle at
which a software version is released
for operational use

the phase in a life cycle during which the
preliminary design is refined and expanded to
contain more detailed descriptions of the
processing logic, data structures, and data
definitions, to the extent that the design is
sufficiently complete to be implemented

the process by which user needs are
transformed into a software version
that can be delivered

determining whether a methodology meets
certain criteria

the point in a life cycle at which it
18 decided that no further changes will be
made to an operational software version

gsee coding

the process by which a software version
is integrated into its operational
environment and tested in this
environment to ensure that it performs
as required

the period of time frcm the initial
perception of need for a software
vergsion to its retirement




.
e,

Maintenance:

Measure:

Method:

Methodology:

Methodology
Characteristic:

Metric:

Model:

Object:

Object-Oriented
Methodology:

Operation:

Operation and
Maintenance:

e N e e e o A A L
R AR SR e v

modification of a software version after
delivery to correct faults, improve
performance or other attributes, or

meet new requirements

a quantity that can be evaluated to
determine whether or not a methodology
meets a particular criteria

a set of rules, guidelines, and
techniques for carrying out a process

a general philosophy for carrying out a
process; comprised of procedures,
principles, and practices

a detailed attribute that can be used to
describe a methodology

a quantity that can be evaluated to
determine whether or not a methodology
has a particular characteristic

a representation which specifies some
but not all of an entity's attributes

an encapsulation of data and/or
processing activity which reflects
some entity in the software or its
operational environment

a methodology that represents the
organization of a piece of software as

a layering of successively more detailed
objects

use of a version in its operational
environment

use of a software system in its
operational envirounment; involves
monitoring for satisfactory performance
and modification as necessary to correct
problems or respond to changed require-
ments

A,

et A .
N N T A
EASSIRCA R

'

AY

......

o6
DR et )

(4
.

ARSI
A A
TN

A8

Ty Y
.
'. *

v

»

LS
A

'l
i




“r,

L
4
’
4
<
o

o

P
.

-'l Y

I

-

Perfective
Maintenance:
Phase:

Product-Oriented
Methodology:

Post-~Deployment
Support:

Preliminary Design:

Product:

Prototype:

Prototyping
Methodology:

Release:

Requirements
Definition:

........

maintenance performed to improve
performance, maintainability, or other
software attributes

a period of time during a life cycle

a methodology that is defined primarily
by specifying the intermediate and final
products to be produced; definition of
the products is usually accompanied by
the definition of phases where each
phase is focused on the preparation of
one or more of the products

see Maintenance

the phase in a life cycle during which
alternatives are analyzed and the general
architecture of a software version 1is
defined; typically includes definition and
structuring of modules and data, definition
of interfaces, and preparation of timing and
gizing estimates

results created by a process

an instance of a software version that
does not exhibit all the properties

of the final system; usually lacking in
terms of functional or performance
attributes

a methodology that organizes the
creation and evolution of a software
vergsion as a series of prototypes

a software version that is delivered for
integration into an automated system

the phase in the life cycle during
which the requirements, such as the
functional and performance capabilities,
are defined




Retirement:

Scope:

Selection:

Software:

Software System:

Specification:

Technology:

Test and
Integration:

Tool:

Variant:

Validation:

Verification:

Version:

the point in a life cycle at which a software
version is removed from service

extent to which a methodology disciplines the
creation and evolution of a software system
rather than just the individual releases or
variants

picking a methodology, or set of alternative
methodologies, for use on a specific project

the executable code, all of its associated
documentation and documents that trace the
history of its creation and evolution

a component of an automated system that is
realized as executable code

the point in time at which a version is
described in a document that defines, in a
relatively complete, precise, and verifiable
manner, the requirements of a software
version

collection of techniques and knowledge
underlying some process

the phase in a life cycle during which the
conformance of the version to its
requirements is assesgsed and the version is
integrated into the larger (software or
automated) system of which it is a part

software which assists in carrying out
a task or activity

any of those versions of a software
system which are prepared in the course
of developing a release

analyzing a version to assure that it
meets user needs

analyzing a version to assure that 1t
meets its requirements

any instance of a software system




1 RSRSETERE

PRI AN

oo

DISTRIBUTION LIST

STARS OFFICE

Dr. Ed Lieblein (3)

STARS Joint Program Office
3p139 (1211 Fern, C107)
Pentagon

Washington, D.C., 20301-3081

MCT CHAIRS

Mr. Lou Chmura

Code 7592

Naval Research Lab

4555 Overlook Avenue, S.W.
Washington, D.C., 20375-5000

Mr. Peter Fonash
AMC/BAM (AMCDE-SB)
Alexandira, Virginia 22337

Mr. Larry Lindley

Code D/072.2

Naval Avionics Center

6000 E 21st Street
Indianapolis, Indiana 46218

Mr. Kenneth Rowe
6200 Harris Heights Ave,
Glen Burnie, MD 21061

Mr. George Sumrall
18 Manor Drive
Neptune, NJ 07753

CSED REVIEW PANEL

Dr. Dan Alpert, Director
Center for Advanced Study
University of Illinois
912 W. Illinois Street
Urbana, IL 61801




e e s s w

L AP
a8
L

aAARBE) VAt

Dr. Barry W. Boehm

TRW Defense Systems Group
MS 02-2304

One Space Park

Redondo Beach, CA 90278

Dr. Ruth Davis

The Pymatuning Group, Inc.
2000 N, 15th Street, Suite 707
Arlington, VA 22201

Dr. Larry E. Druffel
Rational Machines

1501 Salado Drive
Moutain View, CA 94043

Mr. Neil S. Eastman, Manager
Software Engineering & Technology
IBM Federal Systems Division

6600 Rockledge Drive

Bethesda, MD 20817

Admiral Noel Gayler, USN, Retired
1250 S. Washington Street
Alexandria, VA 22314

Dr. Charles E. Hutchinson

Dean, Thayer School of Engineering
Dartmouth College

Hanover, NH 03755

Mr. Oliver Selfridge
45 Percy Road
Lexington, MA 02173

Dr. Harrison Shull, Chancellor
University of Colorado

Campus Box B-17

301 Regent Administration Center
Boulder, CO 80309

Dr. Robert L. Sproull
President Emeritus
University of Rochester
Rochester, NY 14627

DoD~IDA Management Office
1801 N, Beauregard St.
Alexandria, VA 22311

.

....-
T
gt

RO

. Pl o’

ST,
AN

- »

. LA 11 q
LA
'A'l .l ‘l

.l
P

s
3

. et
P
(4 .' -

v »
AN
.
PN

Y
8y



IDA

Mr.
Mr.
Dr.
Mr.
Ms.
Ms.
Mr.
Mr.
Ms.
Mr.
Ms.
Ms.
Mr.
Mr.
Dr.
Ms.

Seymour Deitchwman, HQ

Robin Pirie, HQ

John F. Kramer, Director, CSED
Gil Berglass, CSED

Anne Douville, CSED

Audrey Hook, CSED

Joseph Hrycyszyn, CSED

Robert Knapper, CSED

Catherine W. McDonald, CSED (10)
Richard Morton, CSED

Sarah Nash, CSED

Katydean Price, CSED (2)

Samuel T. Redwine, Jr., CSED (5)
Clyde Roby, CSED

John Salasin, CSED

Francoise Youssefi, CSED

IDA Control & Distribution Vault (10)

‘‘‘‘‘‘‘‘

v LR UM PN ot Bat s B Er N - ), yw TRV IR »

.......................

(RS
-

.
o

TrY
'\ &
’.'a"-'l
s ' v

o

._1"""'
)
t-".n'n

v R
R
&y
Bt S
', Y

>
*
o2,

f»"f.-

¥ waw,
]

%)
AT
At

v 'y
ERAM

WY
»
2.

AP

R
* A,
»

l. *
'1 'l

)
»,

.
» .
- .

RS

o
RIS

W

N
k
v
'l'l




- ¥

- 1) Y
RSP Sl S =

g, e W

Loy

AR AP

. ARG M | SO Doan AP T



